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Introduction 
 
The rapid progress of blood oxygenation level dependent (BOLD) functional magnetic resonance 
imaging (fMRI) in recent years[1-3] has raised the hope that the functional architecture of the human 
brain can be studied directly in a non-invasive manner. The BOLD technique is based on the use of 
deoxyhemoglobin as nature's own intravascular paramagnetic contrast agent[4-6]. When placed in a 
magnetic field, deoxyhemoglobin alters the magnetic field in its vicinity, particularly when it is 
compartmentalized as it is within red blood cells and vasculature. Increases in neuronal and metabolic 
activity of the brain results in a reduction of the relative deoxyhemoglobin concentration due to an 
increase of fresh oxyhemoglobin. Consequently, in conventional BOLD fMRI, brain “activity” can be 
measured as an increase in T2 or T2* weighted MR signals[1-3]. Since its introduction about 10 years 
ago, BOLD fMRI was successfully applied – among numerous other examples - to precisely localize 
the cognitive[7], motor[8], and perceptual[9-11] function of the human cortex cerebri. The explanatory 
utility of BOLD fMRI has been further strengthened in recent years through the introduction of high 
(~3T) and ultra-high (~7T) MRI scanners[12]. Stronger magnetic field not only increases the fMRI 
signal per se, but in addition it will specifically enhance the signal components originating from 
parenchymal capillary tissue, thus enhancing the spatial specificity of BOLD fMRI. 
 
While the BOLD fMRI technique provides detailed information about the spatial location of the 
functionally active cortical areas, the question of functional interdependency between the cortical 
areas remains elusive. This is of particular importance for higher cortical functions, as they require a 
well-coordinated balancing of cortical computations across multiple brain areas. This is most evident 
in the mammalian visual system. Here, similar to other primates, human visual areas are clustered 
along two “streams” diverging from the occipital pole: the ventro-temporal “what or perception” stream 
and the dorsal “where or action” stream[13, 14]. For example, a region in the lateral occipital cortex 
(LOC) extending anteriorly into the temporal cortex responds strongly to a variety of complex shaped 
objects such as polygonal figures, chairs, and gloves, etc.[15, 16]. On the other hand, in the so called 
fusiform face area (FFA)[17] located within the fusiform gyrus, cells are tuned to faces and facial 
stimuli in a way comparable to the receptive field properties of face-selective neurons in primate 
inferotemporal cortex (IT)[18, 19]. Further down the temporal cortex, in the so called parahippocampal 
place area (PPA)[20], maximum functional response can be obtained using scenic or place type of 
stimuli.  
 
In the present study, we used the newly developed diffusion-tensor-imaging (DTI) technique to 
elucidate the pattern of connections between the distinct functional modules of the human occipito-
ventral visual stream. Diffusion Tensor Imaging (DTI) is a powerful MRI technique that enables us to 
translate the self-diffusion, or microscopic motion of water molecules in tissue into a MRI measure of 
tissue integrity and structure. Specifically, in white matter, water self diffusion is restricted mostly by 
the intracellular axonal space, and by the interstitial, extracellular space among the well-packed axons 
in the fiber tract. By taking several diffusion weighted images in several dimensions, one can 
reconstruct the so-called diffusion tensor for each image unit, or pixel. The diffusion tensor gives a 
three dimensional representation of the preferred direction of diffusion, in the shape of the 3D 
ellipsoid. The main axis of the ellipsoid gives the “preferred” direction of diffusion, typically parallel to 
the axonal tract, and the two minor axes perpendicular to the main direction typically provide a 
measure to “lateral” diffusion, or the ability of water molecules to move in a direction perpendicular to 
the main direction. Recently, DTI techniques in combination with a variety of 3-D fiber reconstruction 
algorithm was used to generate spectacular images of the axonal connectivity pattern in vivo both in 
humans[21-23], rodents[24], and recently also in cats[25]. The differences in detailed fiber 



reconstruction algorithms notwithstanding, a key in making DTI into an outstanding tool for cognitive 
neurosciences is to develop selection criteria to determine the seeding region of interest (ROI) for DTI 
fiber tracing. In the majority of fiber-tracking algorithms, tracking starts at a user-defined seeding point 
or region of interest. Such “seeding points” are selected either based on the quality of the underlying 
DWI, or based on a priori anatomical criteria that are known from postmortem studies. Such 
anatomically-motivated tracking strategies are of greatest importance for testing for anatomical 
irregularities in vivo. However, in normal subjects, strictly anatomically defined DTI fiber 
reconstructions have the tendency to simply re-validate what has been already known from 
conventional anatomical and histological techniques, thus resulting in partially tautological statements. 
An alternative way of DTI fiber reconstruction therefore is to use the foci of functional activity - such as 
obtained with BOLD contrast - as the “initial” and “termination” ROIs. This is a more natural choice for 
most questions in cognitive neurosciences, as the main interest here is to elucidate the pattern of 
neuronal circuitry underlying the observed functional activation for a particular task.   
 
Materials and Methods 
 
Subject preparation: All studies were performed with the approval of the Institutional review Board 
(IRB) of the University of Minnesota Medical School and Boston University School of Medicine. 
Following the proper instruction of the subjects, the subjects were asked to lay on the MRI table, 
inside the magnet and view visual stimuli. Paddings and foams were used to maintain the subject’s 
head in a stable position. Earplugs and headphones were employed to reduce the noise due to the 
switching gradients.  
 
Visual stimulation: Visual stimuli were generated on a PC using custom written MATLAB (The 
Mathworks Inc., Natick, MA, USA) software utilizing functions provided by PsychToolbox[26]. Stimuli 
were presented binocularly with a video projector on a rear projection screen. Conventional 
checkerboard stimuli that consisted of four triangular wedges for the upper/lower and left/right visual 
field, and four segmented expanding rings for foveal representation were used for mapping retinotopic 
areas. Localizer stimuli known to activate the respective areas within the human ventral stream were 
used to identify the FFA (conventional/scrambled faces)[27], PPA (buildings and scenes), and LOC 
(set of complex objects). Within each all-novel epoch, subjects saw four categories of pictures that 
each contained thirty different photographs. Within multiple-repeat epochs (4 repetitions), subjects 
saw different photographs from the same category. A localizer was used to identify hMT+ (motion) as 
a part of human dorsal stream.  

 
MRI acquisition: High resolution fMRI and T1-weighted anatomical images were obtained at 3 Tesla 
(Siemens Trio or Philips Intera). The Imaging parameters for the Siemens scanners were: T1 
MPRAGE (non-selective IR), NrOfSlices: 144, SliceThickness: 1 mm, FoV: 256 mm  x  256 mm, 
Matrix: 256 x 256, TR: 2100 ms, TE: 3.93 ms, TI: 1100 ms, Flip angle: 15 degrees, 1 NEX; fMRI: 
Gradient echo EPI: NrOfSlices: 30, SliceThickness: 2 mm, FoV: 256 mm  x  256 mm, Matrix: 128 x 
128, NrOfVolumes: 132, TR: 3000 ms, TE: 40 ms. Parameters for the Philips scanner: Anatomy: T1 
MPRAGE (NS-IR): NrOfSlices: 144, SliceThickness: 1 mm, FoV: 230 mm  x  230 mm, Matrix: 256 x 
256, TR: 2100 ms, TE: 4.6 ms, TI: 1100 ms, Flip angle: 8 degrees, 1 NEX; fMRI: Gradient echo EP: 
NrOfSlices: 30, SliceThickness: 2 mm, FoV: 230 mm  x  230 mm, Matrix: 128 x 128, NrOfVolumes: 
132, TR: 3000 ms, TE: 40 ms.  
 
Diffusion-weighted MRI:  Conventional methods for diffusion-weighted imaging were used in order 
to calculate the voxel-based diffusion tensors. Diffusion imaging parameters for the Siemens scanner 
were: DTI: Spin echo EPI, NrOfSlices: 64, SliceThickness: 2 mm, FoV: 256 mm  x  256 mm, Matrix: 
128 x 128, NrOfDirections: 12 , TR: 11500 ms, TE: 111 ms, 3 NEX. Parameters for the Philips 
scanner: DTI: Spin echo EPI, NrOfSlices: 73, SliceThickness:  1.5 mm, FoV: 230 mm  x  230 mm, 
Matrix: 256 x 256, NrOfDirections: 15, TR: 10646 ms, TE: 91 ms, 1 NEX 

Data analysis: Functional imaging scans were used to localize areas hMT+, LOC, FFA, and PPA, as 
well as retinotopic areas (V1, V2, V3, V3A, VP and V4v). fMRI data were analyzed using 
BrainVoyager (Brain Innovation, Maastricht, Netherlands). Each area was segmented by mapping 
borders in the flattened representation of cortex, and reconstructed as 3D volume-rendered ROIs. 
ROIs were then imported into a custom-written DTI reconstruction software. Diffusion tensors, 
fractional anisotropy (FA), and fiber tracts were calculated using custom-written MATLAB (The 
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Mathworks Inc., Natick, MA, USA) software. Standard methods for FA exclusion and tracking 
algorithms were used[22]; i.e. minimum FA of 0.2 and 60 degrees of Maximum angle. Since fMRI 
activation is limited to the gray/white matter border, we chose to include at least one more voxel 
(beyond the gray/white matter boundary) into our seeding ROI. To investigate the connectivity pattern, 
tracing was performed between two selected ROIs (i.e. V1 & PPA pair, V2 & FFA pair etc.) for each 
individual area. Subsequently, corresponding fMRI and DTI tracing data were superimposed on three-
dimensional anatomical images for visualization.For high-order non-retinotopic visual areas, the 
respective “localizer” stimuli were used. Talairach coordinates of the investigated areas were found to 
be in well agreement with previous published results; hMT+: (46, -58, 4), LOC: (46, -63, 8), FFA: (36, -
48, -16), and PPA: (28, -39, -6).  
 
Results and Discussions 
 
Following the initial localization, voxels from retinotopic and non-retinotopic iso-functional areas were 
used as “seeding” points for DTI based fiber reconstructions. Our data demonstrate – from the same 
subject – the pattern of connections between V1/V2 <--> PPA and V3 <--> FFA, respectively. Overall, 
of the functionally defined areas tested (FFA, PPA, LOC, and hMT), PPA was found to be the most 
highly connected to the retinotopically defined visual areas. Strong connections were found between 
the PPA and areas VP and V4v. In addition, we also found pronounced connections between PPA 
and visual areas V1 and V2. In contrast, a significant connection between primary visual areas 
(V1/V2) and FFA was observed in only one subject (out of 4 subjects used for this type of analysis). 
On the other hand, connections to/from FFA originated (or ended) mostly in V3, V4v and V3A 
(observed in 3 out of 4 subjects analysis for this study). The most pronounced connection for area 
LOC was with area V3A (3 out of 4). hMT was also found to have significant connections to V3A in 
addition to area V3.  

�
The results of our study suggest that high resolution BOLD MRI and Diffusion Tensor Imaging (DTI) 
can be obtained from the same cortical tissue in vivo at 3 Tesla magnetic fields. Furthermore, in our 
study, the foci of fMRI activation were successfully utilized as seeding points for 3D DTI fiber 
reconstruction algorithms, thus providing the map of the axonal circuitry between neuronal 
populations participating in occipito-ventral visual information processing. The results of our 
preliminary study suggest that the functional organization of the human occipito-ventral stream is 
governed by a distinct pattern of inter-areal connectivities. the areas hMT+, LOC, and FFA are tightly 
interconnected, thus forming a loop for visual information processing. The principal connections 
to/from this ventral loop are provided by areas V3 and V3A, while the influence of the primary visual 
areas V1 and V2 to/from this processing loop is limited. The observed connections between V3/V3A 
and FFA are consistent with the hierarchical pattern of visual area known from macaques[28].  
Consistent with classical tractography work done for the visual system of rhesus macaques, our 
fMRI/DTI data suggest a linear connectivity relationship between association visual cortex of the 
occipital lobe and association cortex of the temporal lobe.  
 
Overall, our combined fMRI/DTI studies resulted in occipio-ventral stream connectivity pattern that is 
highly specific and comparable to homologous data obtained in macaques using well-established 
neuroanatomical techniques. However, before this new technique can be utilized for addressing 
clinical and basic neuroscience questions de novo, major interpretative issues will have to be 
addressed. Some of the critical issues are: 
 
Can we trust DTI based fiber reconstructions? Despite intense research, the structural correlate of 
DTI remains elusive. For example, the precise contribution of the underlying fiber density and 
myelination on the anisotropy index has not been completely understood. Thus, it is not clear to what 
degree the results of DTI correspond to actual density and orientation of the local axonal fiber 
bundles. It is also important to understand how white matter is, in general, organized. How often do 
fiber pathways cross, and when they do, what happens? Can fibers change direction sharply in deep 
white matter? How often do individual fibers branch? When axons descend from columns in grey 
matter into white matter what route do they take? Do they remain together or do they intermingle with 
fibers from more distant regions of cortex?  
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Selection criteria for DTI data: In addition to the reliability and validity problems related to DTI 
methodologies per se, the combination of DTI with functional MRI scans raises a set of unique 
challenges and problems. The relevant issues are: a) How do we extract compact seeding ROIs 
based on “patchy” BOLD functional activity? What is the appropriate statistical threshold for this? 
Should all fMRI voxels (above certain threshold) be treated as homologous DTI seeding ROIs 
regardless of their p-values and/or cross correlation coefficients? b) Areas of high BOLD activity are 
located within the cortical gray matter. The cortical gray matter, however, is characterized by low 
fractional anisotrophy (because of the presence of multi-directional fibers/fiber bundles within the 
imaging voxels in the gray matter). Therefore, most reconstructed fibers will terminate at the 
gray/white matter boundary.  If seeding ROIs were placed exclusively within the fMRI voxels, 
conventional DTI algorithms will result in zero or low number of reconstructed fibers. We will therefore 
need to develop automatic “search” algorithm (this is currently done manually) for the closest fiber 
termination points which have to be included as part of the seeding ROI. c) We will need to address 
the question how the experimentally acquired voxel size should be related to the density of the 
seeding points. For example, a given 1x1x1mm3 voxel in the BOLD fMRI study may contain hundreds 
of thousands of physical axonal fibers. For the subsequent DTI fiber reconstruction, should the same 
voxel be then treated as ONE seeding point? Or should the imaging voxel be “regrided” into a 
multitude of sub-seeding points?  
 
In summary, the BOLD-based DTI fiber reconstruction method described in this study allows the local 
orientation of fiber bundles in the white matter to be determined in an absolutely non-invasive manner, 
thus enabling in vivo neuroanatomy in both animals and humans. The methods developed in this 
study has the potential to lay foundation for in vivo neuroanatomy and the ability for non-invasive 
longitudinal studies of brain development.  
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